If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x^2+750x-10=0
a = 80; b = 750; c = -10;
Δ = b2-4ac
Δ = 7502-4·80·(-10)
Δ = 565700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{565700}=\sqrt{100*5657}=\sqrt{100}*\sqrt{5657}=10\sqrt{5657}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(750)-10\sqrt{5657}}{2*80}=\frac{-750-10\sqrt{5657}}{160} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(750)+10\sqrt{5657}}{2*80}=\frac{-750+10\sqrt{5657}}{160} $
| 5n–8=22 | | 5(y+2)=2(2-2y) | | N-8=-8+3n-2n | | 2(3x+3)=5-2x-15 | | 30+15x=40+10x | | 6x4=14 | | -3.12=7x | | 6x+124.50=649.50 | | 2x=2=10 | | 4x+6-x=-15 | | -2(2+x)=-5-3x | | 1-5k=-6k-4 | | 8n=8n+2n | | 2(x-6)=5x+12 | | 8~a=1234 | | -(x/2-2/3)=42 | | -3(1+x)+x=2x-3 | | 0.2y-14=4y | | x/100*5=23 | | D=3/2(m-83) | | (5x+3)÷4=12 | | r-3=-16 | | 3(2-x)+4=-5x | | -(x÷2-2÷3)=42 | | -7x+1=-4x-8 | | 4g-7=2g+5 | | 2+5x-3=9 | | -7(6-x)=-98 | | (x÷2-2÷3)=42 | | 1x=84 | | -1.2=z/46-2.7 | | 30x+15=10+40x |